Editing Animation Curves
Manual     Reference     Scripting   
Reference Manual > Animation View Guide > Editing Animation Curves

このドキュメントは有志により翻訳されたもので、オフィシャルではありません。オリジナルのページはこちら
This document is unofficially translated by users.Please see the original document here.

翻訳に関する修正など、ご連絡はこちらまで。
Please send e-mail to here, when you have any question about the translation.

Editing Animation Curves

The Property List

In an Animation Clip, any animatable property can have an Animation Curve, which means that the Animation Clip controls that property. In the property list of the Animation View properties with Animation Curves have colored curve indicators. For information on how to add curves to an animation property, see the section on Using the Animation View.

A Game Object can have quite a few components and the property list in the Animation View can get very long. To show only the properties that have Animation Curves, click the lower left button in the Animation View to set its state to Show: Animated.


Set the toggle button in the lower left corner to Show: Animated to hide all the properties without Animation Curves from the property list.

Understanding Curves, Keys and Keyframes

An Animation Curve has multiple keys which are control points that the curve passes through. These are visualized in the Curve Editor as small diamond shapes on the curves. A frame in which one or more of the shown curves have a key is called a keyframe. The keyframes are shown as white diamonds in the Keyframe Line.

If a property has a key in the currently previewed frame, the curve indicator will have a diamond shape.


The Rotation.y property has a key at the currently previewed frame. The Keyframe Line marks the keyframes for all shown curves.

The Keyframe Line only shows keyframes for the curves that are shown. If a property is selected in the property list, only that property is shown, and the Keyframe Line will not mark the keys of the curves that are not shown.


When a property is selected, other properties are not shown and the keys of their curves are not shown in the Keyframe Line.

A key can be added to a curve by double-clicking on the curve at the point where the key should be placed. It is also possible to add a key by right-clicking on a curve and select Add Key from the context menu. Once placed, keys can be dragged around with the mouse. It is also possible to select multiple keys to drag at once. Keys can be deleted by selecting them and pressing Delete, or by right-clicking on them and selecting Delete Key from the context menu.


The Keyframe Line shows the keyframes of the currently shown curves. You can add a keyframe by double-clicking the Keyframe Line or by using the Keyframe button.

A keyframe can be added at the currently previewed frame by clicking the Keyframe button or at any given frame by double-clicking the Keyframe Line at the frame where the keyframe should be. This will add a key to all the shown curves at once. It is also possible to add a keyframe by right-clicking the Keyframe Line and select Add Keyframe from the context menu. Once placed, keyframes can be dragged around with the mouse. It is also possible to select multiple keyframes to drag at once. Keyframes can be deleted by selecting them and pressing Delete, or by right-clicking on them and selecting Delete Keyframe from the context menu.

Navigating the Curve View

When working with the Animation View you can easily zoom in on details of the curves you want to work with or zoom out to get the full picture.

You can always press F to frame-select the shown curves or selected keys in their entirely.

Zooming

You can zoom the Curve View using the scroll-wheel of your mouse, the zoom functionality of your trackpad, or by holding Alt while right-dragging with your mouse.

You can zoom on only the horizontal or vertical axis:

Furthermore, you can drag the end caps of the scrollbars to shrink or expand the area shown in the Curve View.

Panning

You can pan the Curve View by middle-dragging with your mouse or by holding Alt while left-dragging with your mouse.

Wrap Mode

An Animation Clip in Unity can have various Wrap Modes that can for example set the Animation Clip to loop. See WrapMode in the Scripting Reference to learn more. The Wrap Mode of an Animation Clip can be set in the Animation View in the lower right selection box. The Curve View will preview the selected Wrap Mode as white lines outside of the time range of the Animation Clip.


Setting the Wrap Mode of an Animation Clip will preview that Wrap Mode in the Curve View.

Editing Tangents

A key has two tangents - one on the left for the ingoing slope and one on the right for the outgoing slope. The tangents control the shape of the curve between the keys. The Animation View have multiple tangent types that can be used to easily control the curve shape. The tangent types for a key can be chosen by right-clicking the key.


Right-click a key to select the tangent type for that key.

In order for animated values to change smoothly when passing a key, the left and right tangent must be co-linear. The following tangent types ensure smoothness:

Sometimes smoothness is not desired. The left and right tangent can be set individually when the tangents are Broken. The left and right tangent can each be set to one of the following tangent types:

Supported Animatable Properties

The Animation View can be used to animate much more than just the position, rotation, and scale of a Game Object. The properties of any Component and Material can be animated - even the public variables of your own scripts components. Making animations with complex visual effects and behaviors is only a matter of adding Animation Curves for the relevant properties.

The following types of properties are supported in the animation system:

Arrays are not supported and neither are structs or objects other than the ones listed above.

Booleans in script components are not supported by the animation system, but booleans in certain built-in components are. For those booleans, a value of 0 equals False while any other value equals True.

Here are a few examples of the many things the Animation View can be used for:

Rotation Interpolation Types

In Unity rotations are internally represented as Quaternions. Quaternions consist of .x, .y, .z, and .w values that should generally not be modified manually except by people who know exactly what they're doing. Instead, rotations are typically manipulated using Euler Angles which have .x, .y, and .z values representing the rotations around those three respective axes.

When interpolating between two rotations, the interpolation can either be performed on the Quaternion values or on the Euler Angles values. The Animation View lets you choose which form of interpolation to use when animating Transform rotations. However, the rotations are always shown in the form of Euler Angles values no matter which interpolation form is used.


Transform rotations can use Euler Angles interpolation or Quaternion interpolation.

Quaternion Interpolation

Quaternion interpolation always generates nice interpolations along the shortest path between two rotations. This avoids rotation interpolation artifacts such as Gimbal Lock. However, Quaternion interpolation cannot represent rotations larger than 180 degrees, because it is then shorter to go the other way around. If you use Quaternion interpolation and place two keys further apart than 180 degrees, the curve will look discontinuous, even though the actual rotation is still smooth - it simply goes the other way around, because it is shorter. If rotations larger than 180 degrees are desired, additional keys must be placed in between. When using Quaternion interpolation, changing the keys or tangents of one curve may also change the shapes of the other two curves, since all three curves are created from the internal Quaternion representation. When using Quaternion interpolation, keys are always linked, so that creating a key at a specific time for one of the three curves will also create a key at that time for the other two curves.


Placing two keys 270 degrees apart when using Quaternion interpolation will cause the interpolated value to go the other way around, which is only 90 degrees.

Euler Angles Interpolation

Euler Angles interpolation is what most people are used to working with. Euler Angles can represent arbitrary large rotations and the .x, .y, and .z curves are independent from each other. Euler Angles interpolation can be subject to artifacts such as Gimbal Lock when rotating around multiple axes at the same time, but are intuitive to work with for simple rotations around one axis at a time. When Euler Angles interpolation is used, Unity internally bakes the curves into the Quaternion representation used internally. This is similar to what happens when importing animation into Unity from external programs. Note that this curve baking may add extra keys in the process and that tangents with the Constant tangent type may not be completely precise at a sub-frame level.